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LETTER TO THE EDITOR

Dynamics of interacting neural networks

W Kinzel†, R Metzler† and I Kanter‡
† Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg,
Germany
‡ Minerva Center and Department of Physics, Bar Ilan University, 52900 Ramat Gan, Israel

Received 17 January 2000

Abstract. The dynamics of interacting perceptrons is solved analytically. For a directed flow
of information the system runs into a state which has a higher symmetry than the topology of the
model. A symmetry-breaking phase transition is found with increasing learning rate. In addition,
it is shown that a system of interacting perceptrons which is trained on the history of its minority
decisions develops a good strategy for the problem of adaptive competition known as the bar
problem or minority game.

Simple models of neural networks describe a wide variety of phenomena in neurobiology and
information theory. Neural networks are systems of elements interacting by adaptive couplings
which are trained by a set of examples. After training they function as content addressable
associative memory, as classifiers or as prediction algorithms. Using methods of statistical
physics many of these phenomena have been elucidated analytically for infinitely large neural
networks [1, 2].

Up to now, only isolated neural networks have been investigated theoretically. However,
many phenomena in biology, social science and computer science may be modelled by a system
of interacting adaptive algorithms. Nothing is known about general properties of such systems.
In this letter we present the first analytic solution of a system of interacting perceptrons. For
simplicity, we restrict ourselves to simple perceptrons with binary output.

The dynamics of a set of perceptrons learning from each other by a directed flow of
information is solved analytically. Starting from a non-symmetric initial configuration, the
system relaxes to a final state which has a higher symmetry than the ring-like flow of
information. The system tries to stay as symmetric as possible. In some cases we find a
phase transition: when the learning rate is increased the system suddenly breaks the symmetry
and relaxes to a state with non-symmetric overlaps.

In addition, we show that a system of interacting neural networks can develop a good
strategy for a model of adaptive competition in closed markets, the El-Farol bar problem [3].
In this problem N agents are competing for limited resources and the individual profit depends
on the collective behaviour. Recently, a variation of this problem known as the minority game
has been studied theoretically in a series of publications [4–8]. The minority game model has
several peculiarities.

(a) The strategies of the agents are quenched random variables (decision tables), given in
advance, and each agent can only choose between a few of these tables.
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(b) Some of the agents are frozen as losers, at least in some regions of the parameter space.
In a realistic situation permanent losers would change the strategy after some time.

(c) A good performance is only achieved if the number of time steps each agent is using for
his/her decision is adjusted to the number of agents.

Our approach shows none of these drawbacks. Each agent uses one perceptron for his/her
decision with couplings which are trained to the minority of all the outputs. Hence the strategies
develop according to the dynamics of the system. We analytically calculate the statistical
properties of such a system of interacting perceptrons. The system performs optimally in the
limit of small learning rates and is insensitive to the size of the number of time steps taken for
the decision. Each agent receives the same profit in the long run.

The perceptron is the simplest model of a neural network. It has one layer of synaptic
weights w = (w1, . . . , wM) and one output bit σ which is given by

σ = sign
M∑
i=1

wixi = sign(w · x) (1)

where x is the input vector of dimension M; for instance, it is given by a window of a bit
sequence St ∈ {+1, −1}, t = 1, 2, . . . , M , with xi = (St−M+1, . . . , St ), or it consists of
random binary or Gaussian variables. A training example is a pair consisting of an input
vector and an output bit (x, σ ); a perceptron learns this example by adjusting its weights to it.
Here we consider three well known learning rules [1]:

H : Hebbian learning:

wnew = wold +
η

M
σ x. (2)

P : Perceptron learning:

H is applied only if the example is misclassified, wold · xσ < 0.

PN : Learning with normalization:

After each step P the weights are normalized, wnew · wnew = 1.

η is the size of the learning step. In the following we mainly consider the limit of infinitely
large networks, M → ∞, in which the learning step η becomes a learning rate for a continuous
presentation of examples. In this case we can use the analytical methods for on-line training
which are well developed [2, 9, 10]. In this letter we study a system of N perceptrons with
weight vectors w1, w2, . . . , wN which are trained by a common input vector x and their mutual
output bits σ 1, . . . , σN .

We consider a set of N interacting perceptrons with a directed cyclic flow of information.
At each training step all of the networks receive the same randomly chosen input vector x. Now
perceptron w1 learns the output from w2, perceptron w2 learns from w3, . . . , perceptron wN

learns from perceptron w1. Our analytical and numerical calculations give the following result:
starting from random initial weight vectors with length w0 = |w0| and using the perceptron
learning rule P for each of the networks, the system runs into a state of complete symmetry
with identical overlaps wi ·wj for all pairs (i, j). The stationary state is given by the equation

ηθ
√

1 + (N − 1) cos θ =
√

2πw0(1 − cos θ) (3)

where θ is the common mutual angle between all weight vectors. Figure 1 shows the result.
For a small learning rate all perceptrons agree with each other, and their mutual angle θ is
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Figure 1. Fixed point of cyclic learning with algorithm P : simulations with M = 100 for two to
five perceptrons and solutions of equation (3). θ is the common mutual angle between all weight
vectors.

close to zero. With increasing learning rate the angle increases to its maximal possible value.
The sum of the weight vectors

∑N
i=1 wi is constant under this learning rule, because for every

perceptron that learns the pattern with a positive sign there is a subsequent neighbour that
learns it with a negative sign. For η → ∞ the norm of this sum is negligible compared to
|wi |, and the vectors form a hypertetrahedron which gives cos θ = −1/(N − 1). Note that the
final stationary state has a higher symmetry than the ring flow of information. This symmetry
seems to be robust to details of the model: in simulations where each perceptron had a different
quenched learning rate, all the angles between the perceptrons again converged to the same
value.

The effective repulsion between the weight vectors can be understood geometrically in
the case of two perceptrons: the sum w1 + w2 is conserved; the fixed point results from
an equilibrium between learning the component of x parallel to the w1–w2-plane (which
decreases θ ) and the component perpendicular to this plane (which increases θ ).

The symmetric behaviour turns out to be different with learning rule PN , where all the
weight vectors wi remain on a sphere |wi | = 1. For small learning rate the system runs into
a symmetric state given by

η θ =
√

2π(1 − cos θ) (4)

(cf equation (3)). However, this equation can only be realized geometrically up to a critical
value ηc(N), where the hypertetrahedron configuration is reached and the sum of the wi

vanishes. In the case of two perceptrons, geometrical constraints do not play a role; however,
there is a maximal ηc,2

.= 1.82, above which no solution of equation (4) exists. For larger
learning rates η > ηc(N) our numerical simulations give the following results as shown in
figure 2.

• For N = 2, there is a discontinuous transition to cos θ = −1 at the mentioned ηc,2.
• For N = 3 the state remains in the triangular configuration cos θ = − 1

2 .
• For N � 3 the symmetry is broken spontaneously. The angle θij between perceptrons i

and j now depends on their distance on the ring. However, the symmetry of the ring is
still conserved. This means, for instance, that for N = 7, θ13 is the same as θ24 and θ35, but
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Figure 2. Fixed points of cos θ in cyclic learning using the rule PN for two to five perceptrons,
respectively, in simulations with M = 100. For η < ηc all the weight vectors have a common
mutual angle θ . For η > ηc(N) and a ring with more than three perceptrons, the symmetry is
broken and the angle θij depends on the distance between perceptrons i and j on the ring.

there are three different values of mutual angles θ12, θ13 and θ14. In general, there are now
N/2 different angles for even N and (N − 1)/2 angles for odd N . Since the perceptrons
try to increase the angle to their nearest neighbour, the angle to more distant perceptrons
has to increase to satisfy geometric constraints.

• For even values N � 4 we observe an additional discontinuous transition to pairing: two
subsets are formed with antiparallel alignment between the subsets. This fixed point is
probably unstable in the M → ∞ limit and is only observed in simulations because the
self-averaging property of the ordinary differential equations breaks down at that point.

Hence, with increasing learning rate the symmetry of the system of interacting perceptrons is
broken, but the state still has the symmetry of the ring. Note that according to equation (2) the
learning step scales to zero with system size M . The prefactor alone triggers the first phase
transition.

Now we show that a system of interacting networks can show better-than-random
performance in a problem of adaptive competition which was introduced recently by Arthur
[3] and is being studied intensively [4–8]. It is a model of a closed market where N agents are
competing for limited resources and where the individual profit depends on the action of the
whole community.
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The model consists of N agents who at each time step have to choose between actions
σ i = +1 or σ i = −1, i = 1, . . . , N . The profit of each agent depends on the minority decision;
each agent gains gi = +1 if he belongs to the minority, and he pays +1 if he belongs to the
majority of the common decision. Hence, one has gi = −σ i sign(

∑N
j=1 σ j ). The global profit

is given by

G =
N∑

i=1

gi = −
∣∣∣∣∣

N∑
j=1

σ j

∣∣∣∣∣ < 0

i.e. the cashier always makes profit. Now each agent uses an algorithm which should
maximize his profit. In this model agents know only the history of the minority sign
St = − sign(

∑N
j=1 σ

j
t ) for each previous time step t , and the agents are not allowed to exchange

information.
If each agent makes a random decision σi , the mean square global loss is

〈G2〉 = N. (5)

It is non-trivial to find an algorithm which performs better than (5). Previous investigations
studied algorithms where each agent has two or more quenched random tables that prescribe
a decision for each of the 2M possible histories xt = (St−M+1, . . . , St ). Each table receives a
score, and the one with the larger score is chosen.

Here we introduce an approach where each agent uses the same dynamic strategy. We use
a perceptron with adaptive weights for each agent to make the decision. The weights define the
strategy of the agent, and our strategies change with time as the weights are updated according
to the minority decision one time step earlier. We follow the usual scenario for training a
perceptron: start from a randomly chosen set of initial weights and train each network by the
usual Hebbian learning rule. At each time its decision of each agent is made by σi = sign(wi ·x)

and each perceptron is trained by the minority decision St ,

wi
t+1 = wi

t − η

M
xt sign

(
N∑

j=1

sign(x · wj )

)
. (6)

Hence, the bit sequence (St ) is generated by the negative output of a committee machine. From
equation (6) it follows that each weight vector is changed by the same increment, hence only
the centre of mass of the weight vectors changes during the learning process.

Our numerical calculations show that starting from a random set of weight vectors and
initial input the systems relaxes to a state with a good performance. The global gain is of the
order of N and for small learning rates the system performs better than random guessing. We
succeeded in solving the dynamics of the interacting networks analytically for the case where
the input vector is replaced by a random one.

Approximating the input x by a random one, we derived the equation of motion of the
norm of the centre of mass; the fixed point describes the global gain in the long run. To simplify
the calculation, the initial norms |wi

0| are set to 1, the sum
∑N

i wi
0 is 0, and the scalar products

are symmetric: wi
0 · w

j

0 = −1/(N − 1) for i = j . We obtain for the attractor of the dynamics

〈G2〉/N = 1 + (N − 1)

(
1 − 2

π
arccos

A − 1/(N − 1)

A + 1

)
(7)

A = πη2

16

(
1 +

√
1 +

16(π − 2)

πNη2

)
. (8)

For random patterns, A is the square norm of the centre of mass at the fixed point. Equation (7)
agrees with simulations of both the real time series and random patterns, as shown in figure 3.
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Figure 3. Average loss 〈G2〉/N versus the learning rate in the bar problem, using the learning rule
H . Simulations used M = 100.

Very similar results (up to factors of 1 + 1/
√

N ) are found analytically and in simulations by
starting with uncorrelated random vectors. For a small learning rate η → 0 we obtain the best
global gain

〈G2〉 =
(

1 − 2

π

)
N � 0.363N. (9)

It is interesting that this result is also obtained for a scenario where we use a distribution of
learning rates η instead of a fixed one. For every perceptron at every time step a different
learning rate is chosen. Hence the centre of mass is not fixed during learning and the weight
vectors increase their lengths similarly to a random walk. This process decreases the average
learning rate compared to the length and leads to the performance given in equation (9).

Hence, the system of interacting networks performs better than the random decision. In
fact, there are several advantages of the system of neural networks compared to the algorithm
of scoring quenched random tables.

Firstly, the size M of the history does not have to be adjusted to the number of agents in
order to perform better than random. Our analysis implicitly assumes that N � M and both M

and N are large, but simulations show good qualitative agreement even for N = 21, M = 4.
For small M , 〈G2〉/N even tends to be smaller than predicted for M = ∞. We suspect that a
strong dependence on the ratio of players to possible strategies only occurs when players have
to pick from a set of fixed strategies, and is absent when they fine tune one strategy. However,
this point still needs further investigation.

Secondly, on average all of the agents perform identically—this is also a consequence of
the absence of quenched disorder. There is no phase transition between a set of successful
agents and losers, as found in [5] for the random tables. This is clear from the geometrical
interpretation: the centre of mass does a random walk on a hypersphere around the origin.
The radius depends on the learning rate; if the radius is smaller than

√
N (obtained from when

adding up N random vectors of norm 1), the ‘strategies’ are distributed better than random. As
the centre of mass moves, each perceptron shifts from the current majority side to the minority
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side and back.
Equation (9) represents the optimum obtainable for perceptrons as long as the symmetry

among them is not broken. It would be interesting to study other network architectures to see
whether the profit of a system of competing neural networks can still be improved.

This work benefited from a seminar at the Max-Planck Institut für Physik komplexer Systeme,
Dresden and was supported by the German Israeli Foundation for Scientific Research and
Development (GIF). The authors would like to thank Michael Biehl and Georg Reents for
useful discussions, and Andreas Engel and Johannes Berg for their introduction to the minority
game.
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